

Dynamic Programming (I)

Chin Ka Wang {rina__owo} 2025-03-19

Content

- 1. Introduction to DP
- 2. 0-1 Knapsack
- 3. Unbounded Knapsack UKP
- 4. Output solution, no. of solution

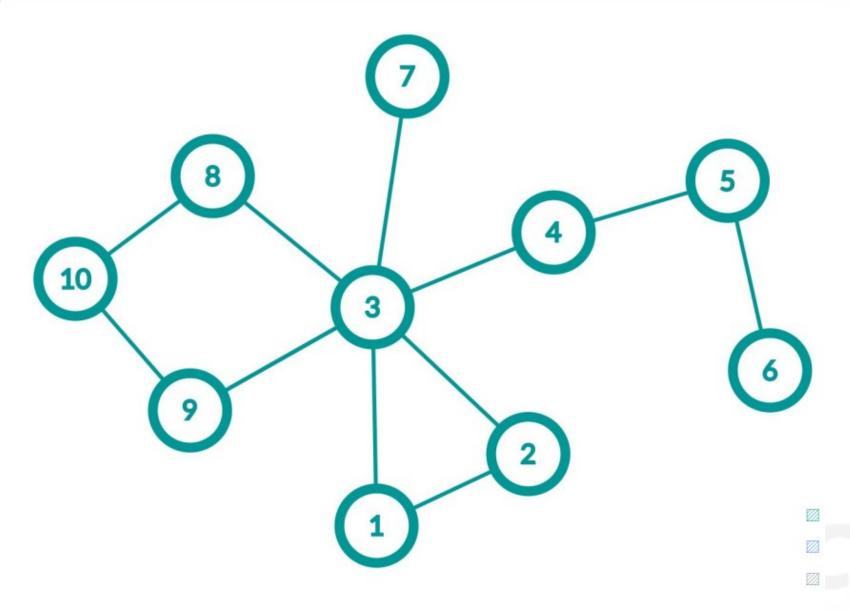
Content

- 1. Introduction to DP
- 2. 0-1 Knapsack
- 3. Unbounded Knapsack UKP
- 4. Output solution, no. of solution

What is Dynamic programming?

• Dynamic programming (DP) is a method for solving complex problems by breaking down the original problem into relatively simpler subproblems.

 It is not a specific algorithm but a method to solve specific problems, it appears in a variety of data structures, and the types of questions related to it are more complicated.



Key steps to do a DP question:

- 1. Observe that the question doesn't have aftereffect (無後效性)
- Define state
- 3. Find the state transition equation
- 4. Find the value of target state using the previous state

Content

- 1. Introduction to DP
- 2. 0-1 Knapsack
- 3. Unbounded Knapsack UKP
- 4. Output solution, no. of solution

There are N items and a knapsack with capacity M.

The weight of the i^{th} item is w_i , the value is v_i .

Find out the largest total cost of the items that the knapsack can afford.

Let us observe what will happen before and after we put the i^{th} item into the knapsack:

Let v be the current value, w be the current weight.

Before: (v, w)

After: $(v + v_i, w + w_i)$

For a knapsack with infinite capacity, assume we have processed the previous i-1 items, there are only two situations:

(m_i means the max value for the first i items)

Value of putting the i^{th} item = $m_{i-1} + v_i$ Value of not putting the i^{th} item = m_{i-1}

By combining two situations, max value the knapsack can carry for the first i item is:

$$\max(m_{i-1} + v_i, m_{i-1})$$

Note that no matter how we put the items, the total weight will always increase.

When we process the i^{th} item with capacity j, it never affect the max value of capacity < j. (No aftereffect)

Define State

 Let DP[i][j] be the max value of putting the first i items in a bag of capacity j.

• The answer of the question is DP[N][M].

Define State Transition Equation

Val	Wt	Item	Max Weight								
			0	1	2	3		5	6	7	
0	0	0	0	0	0	0	0	0	0	0	
1	1	1	0	1	1	1	1	1	1	1	
4	3	2	0	1	1	4	5	5	5	5	
5	4	3	0	1	1	4	5	6	6	9	
7	5	4	0	1	1	4	5	7	8	9	

Define State Transition Equation

State transition equation: Link the relationship between the states of the first i-1 items and the first i item.

Define State Transition Equation

$$DP[i][j] = max(DP[i-1][j], DP[i-1][j-w_i] + v_i)$$

Enumerate Order

Val	Wt	Item	Max Weight								
			0	1	2	3	4	5	6	7	
0	0	0	0	0	0	0	0	0	0	0	
1	1	1	0	1	1	1	1	1	1	1	
4	3	2	0	1	1	4	5	5	5	5	
5	4	3	0	1	1	4	5	6	6	9	
7	5	4	0	1	1	4	5	7	8	9	

Content

- 1. Introduction to DP
- 2. 0-1 Knapsack
- 3. Unbounded Knapsack UKP
- 4. Output solution, no. of solution

UKP is basically a knapsack problem which allows unlimited repetition of items.

Naive solution:

For the i^{th} item, loop till the current weight exceed the capacity. (Treat the i^{th} item as many different items)

$$f(i,j) = max egin{cases} f(i-1,j) \ f(i-1,j-v[i]*1) + w[i]*1 \ ... \ f(i-1,j-v[i]*k) + w[i]*k & k*v[i] \leq j \end{cases}$$

$$f(i,j) = max egin{cases} f(i-1,j) \ f(i-1,j-v[i]*1) + w[i]*1 \ ... \ f(i-1,j-v[i]*k) + w[i]*k & k*v[i] \leq j \end{cases}$$

Note that the enumerate of j is from 0 to M \rightarrow we can get all info of j - k * v[i] before $j \rightarrow j - v[i]$ is already updated using the info of $j - 2 * v[i] \rightarrow$ We just need to compare j and j - v[i]

State Transition Equation:

State Transition Equation:

$$DP[i][j] = max(DP[i-1][j], DP[i][j-w_i] + v_i)$$

Review

Unbounded Knapsack:

$$DP[i][j] = max(DP[i-1][j], DP[i][j-w_i] + v_i)$$

0-1 Knapsack:

$$DP[i][j] = max(DP[i-1][j], DP[i-1][j-w_i] + v_i)$$

Content

- 1. Introduction to DP
- 2. 0-1 Knapsack
- 3. Unbounded Knapsack UKP
- 4. Output solution, no. of solution

Output Solution

We have to record how a certain state in the backpack is derived \rightarrow

Use another bool array G[i][v] to record whether the i^{th} item is chosen when the knapsack has v remaining capacity \rightarrow

Loop from the last item till the first item, $v = w_i$ if it is chosen.

Output Number of Solution

Easy.

Change the max function to sum.

For 0-1 knapsack:

$$DP[i][j] = DP[i-1][j] + DP[i-1][j-w_i]$$

where DP[0] = 1 (The only sol is put nothing)

Practice Problem

- Z0057 0-1 Knapsack
- Z0058 UKP

Q&A

stpc();